update at 2025-10-15 15:07:45
This commit is contained in:
@@ -301,7 +301,8 @@ class ChatService {
|
||||
async sendMessageStream(
|
||||
options: SendMessageOptions,
|
||||
onChunk: (event: StreamEvent) => void,
|
||||
mcpServerId?: string // 新增:可选的 MCP 服务器 ID
|
||||
mcpServerId?: string, // 新增:可选的 MCP 服务器 ID
|
||||
signal?: AbortSignal // 新增:取消信号
|
||||
): Promise<void> {
|
||||
const { topicId, content, role = 'user', model } = options
|
||||
|
||||
@@ -378,7 +379,8 @@ class ChatService {
|
||||
this.saveConversations()
|
||||
onChunk({ type: 'delta', content: chunk, messageId: assistantMessage.id })
|
||||
},
|
||||
mcpServerId // 传递 MCP 服务器 ID
|
||||
mcpServerId, // 传递 MCP 服务器 ID
|
||||
signal // 传递取消信号
|
||||
)
|
||||
|
||||
assistantMessage.status = 'success'
|
||||
@@ -396,14 +398,41 @@ class ChatService {
|
||||
this.saveTopics()
|
||||
}
|
||||
} catch (error) {
|
||||
assistantMessage.status = 'error'
|
||||
assistantMessage.error = error instanceof Error ? error.message : '发送失败'
|
||||
// 检查是否是用户主动取消(参考 cherry-studio 的 PAUSED 状态)
|
||||
const isAborted = error instanceof Error && error.name === 'AbortError'
|
||||
|
||||
if (isAborted) {
|
||||
// 用户主动停止,保留已生成的内容,状态标记为 paused
|
||||
console.log('⏸️ [sendMessageStream] 用户主动停止生成,保留已生成内容')
|
||||
assistantMessage.status = 'paused'
|
||||
assistantMessage.error = undefined // 清除错误信息
|
||||
} else {
|
||||
// 其他错误
|
||||
assistantMessage.status = 'error'
|
||||
assistantMessage.error = error instanceof Error ? error.message : '发送失败'
|
||||
}
|
||||
|
||||
conversation.updatedAt = new Date()
|
||||
this.conversations.set(conversation.id, conversation)
|
||||
this.saveConversations()
|
||||
onChunk({
|
||||
type: 'error',
|
||||
error: assistantMessage.error,
|
||||
messageId: assistantMessage.id
|
||||
})
|
||||
|
||||
if (isAborted) {
|
||||
onChunk({ type: 'paused', messageId: assistantMessage.id })
|
||||
// 更新话题(暂停)
|
||||
if (topic) {
|
||||
topic.messageCount = conversation.messages.length
|
||||
topic.lastMessage = this.getMessagePreview(assistantMessage.content)
|
||||
topic.updatedAt = new Date()
|
||||
this.topics.set(topicId, topic)
|
||||
this.saveTopics()
|
||||
}
|
||||
} else {
|
||||
onChunk({
|
||||
type: 'error',
|
||||
error: assistantMessage.error,
|
||||
messageId: assistantMessage.id
|
||||
})
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -583,31 +612,57 @@ class ChatService {
|
||||
conversation: Conversation,
|
||||
model: string | undefined,
|
||||
onChunk: (chunk: string) => void,
|
||||
mcpServerId?: string // 可选的 MCP 服务器 ID
|
||||
mcpServerId?: string, // 可选的 MCP 服务器 ID
|
||||
signal?: AbortSignal // 取消信号
|
||||
): Promise<void> {
|
||||
const streamStartTime = performance.now()
|
||||
console.log('⏱️ [callModelStream] 开始真流式处理')
|
||||
|
||||
// 获取 MCP 工具列表(如果选择了 MCP 服务器)
|
||||
let tools: any[] = []
|
||||
let mcpServerName = ''
|
||||
if (mcpServerId) {
|
||||
console.log('🔧 [callModelStream] 获取 MCP 服务器工具:', mcpServerId)
|
||||
const mcpTools = this.mcpClient.getTools(mcpServerId)
|
||||
const serverInfo = this.mcpClient.getServerInfo(mcpServerId)
|
||||
mcpServerName = serverInfo?.name || 'mcp'
|
||||
console.log('🔧 [callModelStream] MCP 服务器名称:', mcpServerName)
|
||||
console.log('🔧 [callModelStream] MCP 原始工具列表:', mcpTools)
|
||||
tools = this.convertToolsToOpenAIFormat(mcpTools)
|
||||
tools = this.convertToolsToOpenAIFormat(mcpTools, mcpServerName)
|
||||
console.log('🔧 [callModelStream] 转换后的工具:', tools.length, '个', tools)
|
||||
} else {
|
||||
console.log('⚠️ [callModelStream] 未选择 MCP 服务器,不注入工具')
|
||||
}
|
||||
|
||||
// 准备消息历史
|
||||
const messages = conversation.messages
|
||||
let messages = conversation.messages
|
||||
.filter(m => m.status === 'success')
|
||||
.map(m => ({
|
||||
role: m.role,
|
||||
content: m.content
|
||||
}))
|
||||
|
||||
// 如果有工具,添加系统提示词指导 AI 使用工具
|
||||
if (tools.length > 0 && messages.length > 0 && messages[0].role !== 'system') {
|
||||
const systemPrompt = this.createSystemPromptWithTools(tools, mcpServerName)
|
||||
messages = [
|
||||
{ role: 'system', content: systemPrompt },
|
||||
...messages
|
||||
]
|
||||
}
|
||||
|
||||
console.log('━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━')
|
||||
console.log('🎯 [callModelStream] === 完整的消息列表 ===')
|
||||
console.log(' 消息总数:', messages.length)
|
||||
messages.forEach((msg, idx) => {
|
||||
console.log(` 消息 [${idx}]:`, {
|
||||
role: msg.role,
|
||||
content: msg.content?.substring(0, 100) + (msg.content?.length > 100 ? '...' : ''),
|
||||
contentLength: msg.content?.length || 0
|
||||
})
|
||||
})
|
||||
console.log('━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━')
|
||||
|
||||
// 获取已连接的服务
|
||||
const allServices = modelServiceManager.getAllServices()
|
||||
const services = allServices.filter(s => s.status === 'connected')
|
||||
@@ -673,7 +728,8 @@ class ChatService {
|
||||
onChunk(output)
|
||||
}
|
||||
},
|
||||
tools.length > 0 ? tools : undefined
|
||||
tools.length > 0 ? tools : undefined,
|
||||
signal // 传递取消信号
|
||||
)
|
||||
|
||||
// 输出剩余的缓冲区内容
|
||||
@@ -690,9 +746,21 @@ class ChatService {
|
||||
}
|
||||
|
||||
// 处理工具调用
|
||||
console.log('🔍 [callModelStream] 检查工具调用:', {
|
||||
hasData: !!result.data,
|
||||
hasToolCalls: !!result.data?.toolCalls,
|
||||
toolCallsCount: result.data?.toolCalls?.length || 0,
|
||||
hasMcpServerId: !!mcpServerId,
|
||||
mcpServerId,
|
||||
toolCalls: result.data?.toolCalls
|
||||
})
|
||||
|
||||
if (result.data?.toolCalls && result.data.toolCalls.length > 0 && mcpServerId) {
|
||||
console.log('🔧 [callModelStream] 开始执行工具调用')
|
||||
await this.executeToolCalls(conversation, result.data.toolCalls, mcpServerId, model, onChunk)
|
||||
console.log('🔧 [callModelStream] 开始执行工具调用,共', result.data.toolCalls.length, '个')
|
||||
// 传递 tools 参数,让 AI 可以继续调用其他工具
|
||||
await this.executeToolCalls(conversation, result.data.toolCalls, mcpServerId, model, onChunk, tools)
|
||||
} else {
|
||||
console.log('⚠️ [callModelStream] 没有工具调用需要执行')
|
||||
}
|
||||
|
||||
const endTime = performance.now()
|
||||
@@ -821,13 +889,73 @@ class ChatService {
|
||||
}
|
||||
|
||||
/**
|
||||
* 将 MCP 工具转换为 OpenAI 函数调用格式
|
||||
* 创建包含工具信息的系统提示词
|
||||
* @param tools OpenAI 格式的工具列表
|
||||
* @param serverName MCP 服务器名称
|
||||
*/
|
||||
private convertToolsToOpenAIFormat(mcpTools: any[]): any[] {
|
||||
private createSystemPromptWithTools(tools: any[], serverName: string): string {
|
||||
console.log('━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━')
|
||||
console.log('📝 [createSystemPromptWithTools] 开始生成 System Prompt')
|
||||
console.log(' - 服务器名称:', serverName)
|
||||
console.log(' - 工具数量:', tools.length)
|
||||
console.log('━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━')
|
||||
|
||||
const toolDescriptions = tools.map(tool => {
|
||||
const func = tool.function
|
||||
const params = func.parameters?.properties || {}
|
||||
const required = func.parameters?.required || []
|
||||
|
||||
console.log(` 工具: ${func.name}`)
|
||||
console.log(` 描述: ${func.description}`)
|
||||
|
||||
// 生成参数描述
|
||||
const paramDesc = Object.entries(params).map(([name, schema]: [string, any]) => {
|
||||
const isRequired = required.includes(name)
|
||||
const requiredMark = isRequired ? '[必填]' : '[可选]'
|
||||
return ` - ${name} ${requiredMark}: ${schema.description || schema.type}`
|
||||
}).join('\n')
|
||||
|
||||
return `• ${func.name}\n 描述: ${func.description}\n 参数:\n${paramDesc || ' 无参数'}`
|
||||
}).join('\n\n')
|
||||
|
||||
const systemPrompt = `你是一个智能助手,可以使用以下工具完成任务:
|
||||
|
||||
${toolDescriptions}
|
||||
|
||||
使用指南:
|
||||
1. 当用户需要完成某个任务时,请分析哪个工具最合适
|
||||
2. 如果需要发布内容(如文章、笔记等),请根据用户意图创作完整的内容
|
||||
3. 为内容生成合适的标题、正文、标签等所有必需参数
|
||||
4. 自动调用相应工具,将生成的内容作为参数传递
|
||||
5. 根据工具执行结果,给用户友好的反馈
|
||||
|
||||
注意事项:
|
||||
- **标题必须控制在20字以内**(重要!超过会导致发布失败)
|
||||
- 保持内容质量和平台特色
|
||||
- 标签要相关且有吸引力
|
||||
- 分类要准确
|
||||
- 如果工具执行失败,给出明确的错误说明和建议
|
||||
|
||||
当前连接的 MCP 服务器: ${serverName}`
|
||||
|
||||
console.log('━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━')
|
||||
console.log('📝 [createSystemPromptWithTools] === System Prompt 内容 ===')
|
||||
console.log(systemPrompt)
|
||||
console.log('━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━')
|
||||
|
||||
return systemPrompt
|
||||
}
|
||||
|
||||
/**
|
||||
* 将 MCP 工具转换为 OpenAI 函数调用格式
|
||||
* @param mcpTools MCP 工具列表
|
||||
* @param serverName 服务器名称,用于工具名称前缀
|
||||
*/
|
||||
private convertToolsToOpenAIFormat(mcpTools: any[], serverName: string): any[] {
|
||||
return mcpTools.map(tool => ({
|
||||
type: 'function',
|
||||
function: {
|
||||
name: tool.name,
|
||||
name: `${serverName}__${tool.name}`, // 添加服务器前缀避免冲突
|
||||
description: tool.description || '',
|
||||
parameters: tool.inputSchema || {
|
||||
type: 'object',
|
||||
@@ -846,7 +974,8 @@ class ChatService {
|
||||
toolCalls: any[],
|
||||
mcpServerId: string,
|
||||
model: string | undefined,
|
||||
onChunk: (chunk: string) => void
|
||||
onChunk: (chunk: string) => void,
|
||||
tools?: any[] // 添加 tools 参数
|
||||
): Promise<void> {
|
||||
console.log('🔧 [executeToolCalls] 执行', toolCalls.length, '个工具调用')
|
||||
|
||||
@@ -861,21 +990,32 @@ class ChatService {
|
||||
const toolResults = []
|
||||
for (const toolCall of toolCalls) {
|
||||
try {
|
||||
const functionName = toolCall.function.name
|
||||
const fullFunctionName = toolCall.function.name
|
||||
// 解析工具名称:serverName__toolName
|
||||
const toolName = fullFunctionName.includes('__')
|
||||
? fullFunctionName.split('__')[1]
|
||||
: fullFunctionName
|
||||
|
||||
const functionArgs = JSON.parse(toolCall.function.arguments)
|
||||
|
||||
console.log(`🔧 [executeToolCalls] 调用工具: ${functionName}`, functionArgs)
|
||||
onChunk(`\n\n🔧 正在调用工具: ${functionName}...\n`)
|
||||
console.log('━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━')
|
||||
console.log(`🔧 [executeToolCalls] 工具调用详情:`)
|
||||
console.log(` - 完整工具名: ${fullFunctionName}`)
|
||||
console.log(` - 提取工具名: ${toolName}`)
|
||||
console.log(` - MCP服务器ID: ${mcpServerId}`)
|
||||
console.log(` - 参数:`, JSON.stringify(functionArgs, null, 2))
|
||||
console.log('━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━')
|
||||
onChunk(`\n\n🔧 正在调用工具: ${toolName}...\n`)
|
||||
|
||||
const result = await this.mcpClient.callTool(mcpServerId, functionName, functionArgs)
|
||||
const result = await this.mcpClient.callTool(mcpServerId, toolName, functionArgs)
|
||||
|
||||
console.log(`✅ [executeToolCalls] 工具调用成功: ${functionName}`, result)
|
||||
console.log(`✅ [executeToolCalls] 工具调用成功: ${toolName}`, result)
|
||||
onChunk(`✅ 工具执行完成\n`)
|
||||
|
||||
toolResults.push({
|
||||
tool_call_id: toolCall.id,
|
||||
role: 'tool',
|
||||
name: functionName,
|
||||
name: fullFunctionName, // 保持与 AI 调用时的名称一致
|
||||
content: JSON.stringify(result)
|
||||
})
|
||||
} catch (error) {
|
||||
@@ -925,14 +1065,24 @@ class ChatService {
|
||||
|
||||
// 向 AI 发送工具结果,获取最终回复
|
||||
console.log('🤖 [executeToolCalls] 将工具结果发送给 AI')
|
||||
console.log('🔧 [executeToolCalls] 继续传递工具列表:', tools?.length || 0, '个')
|
||||
onChunk('\n\n🤖 正在生成回复...\n')
|
||||
|
||||
await modelServiceManager.sendChatRequestStream(
|
||||
const result = await modelServiceManager.sendChatRequestStream(
|
||||
service.id,
|
||||
messages,
|
||||
selectedModel,
|
||||
onChunk
|
||||
onChunk,
|
||||
tools // ← 传递工具列表,让 AI 可以继续调用工具
|
||||
)
|
||||
|
||||
// 递归处理:如果 AI 再次调用工具,继续执行
|
||||
if (result.data?.toolCalls && result.data.toolCalls.length > 0) {
|
||||
console.log('🔁 [executeToolCalls] AI 再次调用工具,递归执行:', result.data.toolCalls.length, '个')
|
||||
await this.executeToolCalls(conversation, result.data.toolCalls, mcpServerId, model, onChunk, tools)
|
||||
} else {
|
||||
console.log('✅ [executeToolCalls] 工具调用链完成')
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
|
||||
Reference in New Issue
Block a user